
CS61C Instruction Translation, CALL
Summer 2025 Discussion 5

1 RISC-V Instruction Translation
1.1 In this question, translate the following RISC-V instructions into their binary and hexadecimal

values.

a) addi s1 x0 -24 = 0b1111 1110 1000 0000 0000 0100 1001 0011
1.1

 = 0xFE800493
1.1

For this question, use the CS 61C reference card to obtain the information needed to convert
each instruction to its binary representation. One thing that helps is splitting the parsing
into sections.

For question 1, reading pages 1 and 2 of the reference card we can find:

addi s1 x0 -24:
Instruction format: I-type
immediate (12 bits): -24 = 0b1111 1110 1000
opcode (7 bits): 0b001 0011
funct3 (3 bits): 0b000
rs1 (5 bits): x0 = 0b00000
rd (5 bits): s1 = x9 = 0b01001

I-type instructions have the format:

imm[11:0] | rs1 | funct3 | rd | opcode].

Combining the values for our addi instruction into the I-type format gives us: 0b1111 1110
1000 0000 0000 0100 1001 0011 = 0xFE800493

1

https://cs61c.org/sp25/pdfs/resources/reference-card.pdf

2 Instruction Translation, CALL

b) sh s1 4(t1) = 0b0000 0000 1001 0011 0001 0010 0010 0011
1.1

 = 0x00931223
1.1

For the second question, following a similar method using the CS 61C reference card:

sh s1 4(t1):
Instruction format: S-type
rs1: s1 = t1 = 0b00110
rs2: s1 = x9 = 0b01001
immediate: 4 = 0b0000 0000 0100
opcode: 0b010 0011
funct3: 0b001

Notice that S-type instructions are encoded as follows: [imm[11:5] | rs2 | rs1 | funct3
| imm[4:0] | opcode]. imm[11:5] is bits 11-5 inclusive of the immediate, imm[4:0] is
bits 4-0 of the immediate, and so on.

Thus, assembling the S-type instruction: 0b0000 0000 1001 0011 0001 0010 0010 0011
= 0x00931223

2

https://cs61c.org/sp25/pdfs/resources/reference-card.pdf

Instruction Translation, CALL 3

1.2 In this question, translate the following hexadecimal values into RISC-V instructions.

a) 0xFE05 0CE3 = beq a0, x0, -8
1.2

0xFE05 0CE3 = 0b1111 1110 0000 0101 0000 1100 1110 0011

For the reverse conversion, we first need to determine the instruction type. To do so, we
examine the lower 7 bits instruction[6:0] as this will always be our opcode. Then, if
necessary, we examine funct3 / funct7 as necessary to narrow down specific instruction.

opcode = 0b110 0011 which is for a B-type instruction.

A B-type instruction has the fields: [imm[12|10:5] | rs2 | rs1 | funct3 | imm[4:1|
11] | opcode] (note: an expression like [imm[12|10:5] | ...] is equivalent to [imm[12]
| imm[10:5] | ...]).

We can pattern match as follows:

imm[12]: 0b1
imm[10:5]: 0b11 1111
rs2: 0b00000 = x0
rs1: 0b01010 = x10 = a0
funct3: 0b000
imm[4:1] = 0b1100
imm[11] = 0b1

With a B-type opcode and funct3 = 0b000 we know that this is a beq instruction.

Assembling the full immediate, we get the 13-bit branch immediate to be [imm[12] |
imm[11] | imm[10:5] | imm[4:1] | 0] = 0b1111 1111 1100 0. Notice that branch
immediates have an implicit zero (see following question for explanation why). Converting
from binary to decimal (recall immediates are in two’s complement) we get imm = -8.

Thus, we can assemble our instruction as 0x2345 5487 = beq a0, x0, -8

3

4 Instruction Translation, CALL

b) 0x2345 54B7 = lui s1 0x23455
1.2

0x2345 54B7 = 0b0010 0011 0100 0101 0101 0100 1011 0111

For the reverse conversion, we first need to determine the instruction type. To do so, we
examine the bits instruction[6:0] as this will always be our opcode. Then, if necessary,
we would examine funct3 / funct7 as necessary to narrow down instruction.

opcode = 0b011 0111 which is for a U-type instruction (specifically for lui).

A U-type lui instruction has the fields: imm[31:12] | rd | opcode, so we can pattern
match as follows:

lui rd immu
immu = Immediate[31:12] = 0b0010 0011 0100 0101 0101
 = 0x23455
rd: 0b01001 = s1

To get the answer 0x2345 54B7 = lui s1 0x23455

4

Instruction Translation, CALL 5

1.3 Given the following RISC-V code and instruction addresses, translate the jal and bne instruc-
tions (you’ll need your RISC-V reference sheet!) and determine the value of R[ra] during the
execution of loop.

 loop:
0x002CFF00: add t1, t2, t0 0x00538333

0x002CFF04: jal ra, foo 0x028000EF
1.3

0x002CFF08: bne t1, zero, loop 0xFE031CE3
1.3

 ...
 foo:

0x002CFF2C: jr ra R[ra] = 0x002CFF08
1.3

For the first jal instruction, we can find that rd = ra = 0b00001. To determine the
immediate, we need to move our PC to the first instruction starting at the label foo.
0x002CFF2C-0x002CFF04 = 0x00000028 = 40 in decimal. Thus, our 21-bit offset will be
0b0...00101000 which means our J-type immediate will be imm[20:1] = 0b0...0010100
(recall the implicit 0). Reassembling the J-type instruction format, we get 0x028000EF

For bne, we can decode the fields following the steps outlined in the previous questions. To find
the B-type immediate, we need to move the PC from 0x002CFF08 to 0x002CFF00 (the start
of label loop) which is PC-8 bytes away. Thus, we have an offset of -8 = 0b11...111000
which gives the immediate imm[12:1] = 0b111111111100. Assembling the instruction, we
get 0xFE031CE3.

R[ra] = 0x002CFF08 because the jal instruction sets the return address register to be PC +
4 so that the callee can “return” to the caller by jumping back to the next instruction that should
be executed.

5

6 Instruction Translation, CALL

2 RISC-V Addressing
We have several addressing modes to access memory (immediate not listed):

a) Base displacement addressing adds an immediate to a register value to create a data memory
address (used for lw, lb, sw, sb).

b) PC-relative addressing uses the PC and adds the immediate value of the instruction to create
an instruction address (used by branch and jump instructions).

c) Register Addressing uses the value in a register as an instruction address. For instance, jalr,
jr, and ret, where jr and ret are just pseudoinstructions that get converted to jalr.

2.1 What is the range of 32-bit instructions that can be reached from the current PC using a single
branch instruction? Note that RISC-V branch instructions must support branching to 16-bit
“compressed” instructions (enabled via an optional RISC-V extension).

Let’s first figure out how many bytes we can move the PC.

The B-format instruction encoding has support for a 12-bit immediate field. Because RISC-V
must support 16-bit instructions, and our instructions will always be word-aligned (half-word
for 16b instructions), the byte offset needed to branch to any instructions will always be divisible
by 2. Thus, we assume an implicit 0 at bit 0 of our immediate field, allowing a 13-bit offset
(that’s why the reference sheet describes the immediate as imm[12:1]!). It is signed, the branch
immediate can move the PC a total range of [−212, 212 − 2] bytes (recall last bit is always 0).

To find the range of 32-bit instructions we can reach from the current PC, we look for all byte
offsets we can reach that are divisible by 4. Thus, we have a range of [−210, 210 − 1] 32-bit
instructions to branch to.

For those curious: the RISC-V “RVC” extension can be enabled to compress many common
instructions to 16-bits.

2.2 What is the maximum range of 32-bit instructions that can be reached from the current PC using
a jump instruction?

The immediate field of the jal instruction is 20 bits, while that of the jalr instruction is only
12 bits, so jal can reach a wider range of instructions. As with above, let’s first find the number
of bytes we can move the PC.

With a 20-bits of immediate (21 bits with implicit zero) for the jal instruction, we have a signed
range of [−220, 220 − 2] bytes. The number of 4-byte instructions will be the range of addresses
divisible by 4, so we can jump to reference within [−218, 218 − 1] instructions of the current PC.

6

Instruction Translation, CALL 7

3 Two-Pass Assembly
Consider the following assembly code. Assume that printf exists in the C standard library and
that msg exists at an unknown address in the .data section.

Address	Assembly
.data | msg: .string "Hello World"
 |
.text |
0x0C | add t0, x0, x0
0x10 | addi t1, x0, 4
0x14 | loop: beq t0, t1, end
0x18 | addi a0, a0, 1
0x1C | la a0, msg # load address of `msg`
0X20 | jal ra, printf
0X24 | n: addi t0, t0, 1
0X28 | j loop
0X2C | end: ret

3.1 This code is output from the Compiler and may contain pseudoinstructions.

The compiler is responsible for translating high-level language code (e.g. C) to assembly. The
compiler’s output may contain pseudoinstructions which gets translated by the assembler.

3.2 Assume we are using a two-pass assembler. Fill out the symbol table after the first pass (top-
to-bottom) of the assembler. Not all lines may be used. The order of entries in the table do not
matter.

Symbol Table

Label Address

msg ?

loop 0x14

n 0x24

end 0x2C

7

8 Instruction Translation, CALL

The assembler performs two passes over the program to compute all the offsets. Branches and
PC-relative jumps that target labels with positive offsets are unknown in the first pass (ex: during
the assembler’s first pass, it encounters the label end in beq t0, t1, end before it has seen
the address of end).

The solution is to take two passes over the program. Pass 1 remembers the positions of labels
which are stored in the symbol table, and pass 2 uses label positions to generate the machine
code. References to static data and external functions cannot be determined at this stage,
however, because full 32-bit addresses are unknown until the linker creates the executable.

For the first pass of the assembler:

a) msg is defined in the data section and will be static data with an absolute address. Thus, it’s
address will be unknown until the linker stage. msg will be defined in the symbol table and
passed to the relocation table.

b) loop is defined at address 0x14 and is defined in the symbol table.
c) n is defined at address 0x24 and is defined in the symbol table.
d) end is defined at address 0x2C and is defined in the symbol table.

Note that the symbol table contains all labels defined within the current file that can be used
externally. Since printf is not defined in the current file, it isn’t in the symbol table.

3.3 After the first pass of the assembler, which of the instructions do not have their addresses fully
resolved?

Answer:
a) beq t0, t1, end
b) la a0, msg
c) jal ra, printf

At the end of the first-pass, all instructions with forward references (positive PC-relative offsets)
are still unknown. This is the case for beq t0, t1, end. Additionally, any absolute addresses
or links to external library functions are unknown and cannot be translated until the linker
stage (jal ra, printf and la a0, msg).

3.4 After the second pass of the assembler but before the linker, which of the instructions do not
have their addresses fully resolved?

Answer: jal ra, printf and la a0, msg

The address of the label end is known in the symbol table at the end of the assembler’s first pass.
On the second pass, the address is resolved and the instruction can be translated to machine
code.

printf is an external library function whose address is unknown and is determined by the
linker. Additionally, msg will be stored as absolute address (not PC-relative) at an address
determined by the linker, and thus la a0, msg cannot be translated at this stage.

8

	RISC-V Instruction Translation
	RISC-V Addressing
	Two-Pass Assembly

