
CS61C Instruction Translation, CALL
Summer 2025 Discussion 5

1 RISC-V Instruction Translation
1.1 In this question, translate the following RISC-V instructions into their binary and hexadecimal

values.

a) addi s1 x0 -24 = 0b
1.1

 = 0x
1.1

b) sh s1 4(t1) = 0b
1.1

 = 0x
1.1

1

2 Instruction Translation, CALL

1.2 In this question, translate the following hexadecimal values into RISC-V instructions.

a) 0xFE05 0CE3 =
1.2

b) 0x2345 54B7 =
1.2

1.3 Given the following RISC-V code and instruction addresses, translate the jal and bne instruc-
tions (you’ll need your RISC-V reference sheet!) and determine the value of R[ra] during the
execution of loop.

 loop:
0x002CFF00: add t1, t2, t0 0x00538333

0x002CFF04: jal ra, foo
1.3

0x002CFF08: bne t1, zero, loop
1.3

 ...
 foo:

0x002CFF2C: jr ra R[ra] =
1.3

2

Instruction Translation, CALL 3

2 RISC-V Addressing
We have several addressing modes to access memory (immediate not listed):

a) Base displacement addressing adds an immediate to a register value to create a data memory
address (used for lw, lb, sw, sb).

b) PC-relative addressing uses the PC and adds the immediate value of the instruction to create
an instruction address (used by branch and jump instructions).

c) Register Addressing uses the value in a register as an instruction address. For instance, jalr,
jr, and ret, where jr and ret are just pseudoinstructions that get converted to jalr.

2.1 What is the range of 32-bit instructions that can be reached from the current PC using a single
branch instruction? Note that RISC-V branch instructions must support branching to 16-bit
“compressed” instructions (enabled via an optional RISC-V extension).

2.2 What is the maximum range of 32-bit instructions that can be reached from the current PC using
a jump instruction?

3

4 Instruction Translation, CALL

3 Two-Pass Assembly
Consider the following assembly code. Assume that printf exists in the C standard library and
that msg exists at an unknown address in the .data section.

Address	Assembly
.data | msg: .string "Hello World"
 |
.text |
0x0C | add t0, x0, x0
0x10 | addi t1, x0, 4
0x14 | loop: beq t0, t1, end
0x18 | addi a0, a0, 1
0x1C | la a0, msg # load address of `msg`
0X20 | jal ra, printf
0X24 | n: addi t0, t0, 1
0X28 | j loop
0X2C | end: ret

3.1 This code is output from the ____________________ (Compiler, Assembler, Linker, or Loader)
and ________________ (may / may not) contain pseudoinstructions.

3.2 Assume we are using a two-pass assembler. Fill out the symbol table after the first pass (top-
to-bottom) of the assembler. Not all lines may be used. The order of entries in the table do not
matter.

Symbol Table

Label Address

3.3 After the first pass of the assembler, which of the instructions do not have their addresses fully
resolved?

4

Instruction Translation, CALL 5

3.4 After the second pass of the assembler but before the linker, which of the instructions do not
have their addresses fully resolved?

5

	RISC-V Instruction Translation
	RISC-V Addressing
	Two-Pass Assembly

