
CS61C Boolean Algebra, SDS
Summer 2025 Discussion 7

1 Boolean Logic
1.1 Simplify the following Boolean expressions:

(a) (A + B)(A + B)C = AC

A breakdown of the boolean algebra laws used to simplify the expression is shown below:

(A + B)(A + B)C = (AA + AB + AB + BB)C Distributive Property

= (A + AB + 0)C Idempotent & Inverse Properties

= (A + AB)C Identity Property

= A(1 + B)C Distributive Property

= AC Null Property
(b) A B C + A B C + A B C + A B C + A B C + A B C = C + A

A C(B + B) + A C(B + B) + AC (B + B) = A C + AC + AC Distributive

= A C + AC + AC + AC Idempotent

= (A + A)C + A(C + C) Distributive

= C + A Inverse

Alternatively, to simplify A C + AC + AC with the distributive property 𝑥 + 𝑦𝑧 = (𝑥 +
𝑦) ⋅ (𝑥 + 𝑧):

A C + AC + AC = C(A + A) + AC

= C + AC
= (C + A)(C + C) Distributive (AND form)

= C + A

(c) A(B C + BC) = A + BC + BC

A(B C + BC) = A + B C + BC De Morgan's

= A + (B C) BC De Morgan's

= A + (B + C)(B + C) De Morgan's

= A + BC + BC Distributive

1

2 Boolean Algebra, SDS

(d) A(A + B) + (B + AA)(A + B) = A + B

A(A + B) + (B + AA)(A + B) = A(A + B) + (A + B)(A + B) Idempotent

= (A + B)(A + A + B) Distributive

= (A + B)(1 + B) Inverse

= (A + B) Null

2 Digital Logic Simplification
For the following digital logic circuits:

1. Write a boolean algebra expression that corresponds the physical circuit.
2. Simplify the expression and draw the simplified circuit.

2.1

2

Boolean Algebra, SDS 3

We can start by labeling the inputs / outputs of each of our logic gates. The first two gates after
the A and B inputs are NOT gates which output A and B respectively. These are fed as inputs
to the AND gate which will output A ⋅ B. Lastly, this is fed into NOT gate which is our output
expression F(A, B) = A ⋅ B. We can simplify this expression with De Morgan’s law to get a
simplified expression:

F(A, B) = A ⋅ B

= A + B
= A + B

Redrawing our simplified circuit, we get:

Which is just an OR gate. As extra practice, you can verify the simplification by writing truth
tables for each expressions and verifying that they match.

2.2

3

4 Boolean Algebra, SDS

Following similar logic as above, can write expressions for the inputs and outputs of each of the
logic gates. The first NAND gate has inputs A and A for an output of A ⋅ A (“not A and A”) and
similarly for the second NAND gate. Lastly, the outputs are fed into an AND gate and can be
simplified:

F(A, B) = (A ⋅ A)(B ⋅ B)

= A ⋅ B

Additionally, A ⋅ B is equivalent to a NOR gate and can be redrawn as:

Note that this demonstrates how NOT gates can be formed by feeding the same input to both
inputs of a NAND gate. In fact, all boolean algebra circuits can be formed only using NAND
gates (think about why this may be the case?).

4

Boolean Algebra, SDS 5

2.3

We can label the outputs of each gate in the circuit. In the first layer, we two AND gates for AB
and AB. The final AND gate takes AB as its first input and C as its second input for a combined
output of ABC. Lastly, an OR gate combines the previous gates with the input B for the final
function of F(A, B, C) = AB + ABC + B

Following the procedures in question 1, we can use boolean algebra to simplify the equation:

AB + ABC + B = (A + AC + 1)B

= B

Thus, we can redraw the circuit as simply:

2.4 Why might it be useful to simplify logic circuits?

Complex digital circuits can be simplified to minimize different objectives such as area or cost. In
practice, computers use sophisticated algorithms to optimize circuits for many factors including
area, cost, and timing requirements (which will be explored in future week’s discussions).

3 Combinational Logic from Truth Tables
For this question, we have a single 3-bit input and a single 4-bit output. We want to design
a combinational logic circuit to achieve the desired output given the appropriate combinations
of input bits (Input=001 ⟹ Output=0011, and so on…). Here is the truth table we wish to
implement:

5

6 Boolean Algebra, SDS

Input Out
000 0001
001 0011
010 1111

011-111 xxxx

The x’s for the final entry of the table indicate that any output is valid for the case that Input is
011, 100, 101, 110, and 111

3.1 Write out and simplify boolean expressions for each of the output bits Out[3], Out[2],
Out[1], and Out[0] in terms of the input bits In[2], In[1], In[0].

When deriving expressions for multi-bit values, we find split up the values and find expressions
for the individual bits.

Working from right-to-left starting with Out[0], we see that its value is one in all cases which
are defined. We can set it to the expression Out[0] = 1.

For Out[1], we see that it is 1 whenever Input=001, Input=010, or for one of the undefined
input cases. We can write translate this to an expression as Out[1] = In[2] In[1] In[0] +
In[2] In[1] In[0]. We can also introduce input terms from the undefined cases to help with
simplification, namely Input=101 and Input=110 to get:

Out[1] = In[2] In[1] In[0] + In[2] In[1] In[0] + In[2] In[1] In[0] + In[2] In[1] In[0]

= In[2] In[1] In[0] + In[2] In[1] In[0] + In[2] In[1] In[0] + In[2] In[1] In[0]

= In[1] In[0] + In[1] In[0]

To further simplify the expression, we introduce the undefined terms Input=011 and
Input=111

Out[1] = In[1] In[0] + In[1] In[0] + In[2] In[1] In[0] + In[2] In[1] In[0]

= In[1] In[0] + In[1] In[0] + In[1] In[0]

= In[1] In[0] + In[1] In[0] + In[1] In[0] + In[1] In[0]

= (In[1] In[0] + In[1] In[0]) + (In[1] In[0] + In[1] In[0])

= In[0] + In[1]

Following a similar process as above, the final two bits simplify to Out[3] = Out[2] = In[1].

While this is a formal way of deriving the answer, there is an alternate, simpler way to approach
this problem: think about what combination of input bits can give you the desired output bits.

Notice from the truth table that Out[1] is 1 when In[0] or In[1] is 1, and 0 otherwise. (We
ignore the other In bits and the undefined cases since they do not matter). Hence, Out[1] =
In[0] + In[1].

Out[2] and Out[3] are 1 when In[1] is 1, and 0 otherwise. Thus, Out[3] = Out[2] = In[1].

6

Boolean Algebra, SDS 7

3.2 Draw out the boolean circuit based on your simplified expressions above. You may use constants
0 and 1, and the logic gates AND, OR, NOT.

4 SDS Intro
4.1 Fill out the timing diagram. The clock period (rising edge to rising edge) is 8ps. For every register,

clk-to-q delay is 2ps, setup time is 4ps, and hold time is 2ps. NOT gates have a 2ps propagation
delay, which is already accounted for in the !clk signal given.

7

8 Boolean Algebra, SDS

4.2 In the circuit below:
• RegA and RegB have setup, hold, and clk-to-q times of 4ns,
• All logic gates have a delay of 5ns
• RegC has a setup time of 6ns.

What is the maximum allowable hold time for RegC? What is the minimum acceptable clock
cycle time for this circuit, and clock frequency does it correspond to?

The maximum allowable hold time for RegC is how long it takes for RegC’s input to change, so
(clk-to-q of A or B) + shortest CL time = 4 + (5 + 5) = 14 ns.

The minimum acceptable clock cycle time is clk-to-q + longest CL time + setup time
= 4 + (5 + 5 + 5) + 6 = 25 ns.

25 ns corresponds to a clock frequency of (1
25∗10−9)𝑠−1 = 40 MHz

5 FSM
5.1 What pattern in a bitstring does the FSM below detect? What would it output for the input

bitstring 011001001110?

8

Boolean Algebra, SDS 9

Start

0/0 1/1

1/0

0/0

0 1

The FSM outputs a 1 if it detects the pattern 11. The FSM would output 001000000110.

5.2 Fill in the following FSM for outputting a 1 whenever we have two repeating bits as the most
recent bits, and a 0 otherwise. You may not need all states.

0/0

1/0

0/1

1/1

1/00/0Start

0

1

5.3 Draw an FSM that will output a 1 if it recognizes the regex pattern {10+1}. That is, if the input
forms a pattern of a 1, followed by one or more 0s, followed by a 1.

9

10 Boolean Algebra, SDS

0/0

1/0

0/0

1/0 0/0

1/0

0/0

1/1

Start

0

1 10+

10

	Boolean Logic
	Digital Logic Simplification
	Combinational Logic from Truth Tables
	SDS Intro
	FSM

