1 Boolean Logic 1.1 Simplify the following Boolean expressions: (a) $$(A+B)(A+\overline{B})C$$ (b) $$\overline{A}\overline{B}\overline{C} + \overline{A}\overline{B}\overline{C} + A\overline{B}\overline{C} + A\overline{B}\overline{C} + A\overline{B}C + A\overline{B}C$$ (c) $$\overline{A(\overline{B}\overline{C} + BC)}$$ (d) $$\overline{A}(A+B) + (B+AA)(A+\overline{B})$$ 2 Boolean Algebra, SDS # 2 Digital Logic Simplification For the following digital logic circuits: - 1. Write a boolean algebra expression that corresponds the physical circuit. - 2. Simplify the expression and draw the simplified circuit. 2.1 2.2 2.3 2.4 Why might it be useful to simplify logic circuits? ### 3 Combinational Logic from Truth Tables For this question, we have a single 3-bit input and a single 4-bit output. We want to design a combinational logic circuit to achieve the desired output given the appropriate combinations of input bits (Input=001 \Longrightarrow Output=0011, and so on...). Here is the truth table we wish to implement: | Input | Out | |---------|------| | 000 | 0001 | | 001 | 0011 | | 010 | 1111 | | 011-111 | xxxx | The x's for the final entry of the table indicate that any output is valid for the case that Input is 011, 100, 101, 110, and 111 3.1 Write out and simplify boolean expressions for each of the output bits Out[3], Out[2], Out[1], and Out[0] in terms of the input bits In[2], In[1], In[0]. Draw out the boolean circuit based on your simplified expressions above. You may use constants 0 and 1, and the logic gates AND, OR, NOT. ### 4 SDS Intro 4.1 Fill out the timing diagram. The clock period (rising edge to rising edge) is 8ps. For every register, clk-to-q delay is 2ps, setup time is 4ps, and hold time is 2ps. NOT gates have a 2ps propagation delay, which is already accounted for in the !clk signal given. #### 6 Boolean Algebra, SDS #### 4.2 In the circuit below: - RegA and RegB have setup, hold, and clk-to-q times of 4ns, - All logic gates have a delay of 5ns - RegC has a setup time of 6ns. What is the maximum allowable hold time for RegC? What is the minimum acceptable clock cycle time for this circuit, and clock frequency does it correspond to? ## 5 FSM 5.1 What pattern in a bitstring does the FSM below detect? What would it output for the input bitstring 011001001110? 5.2 Fill in the following FSM for outputting a **1** whenever we have two repeating bits as the most recent bits, and a **0** otherwise. You may not need all states. 5.3 Draw an FSM that will output a 1 if it recognizes the regex pattern {10+1}. That is, if the input forms a pattern of a 1, followed by one or more 0s, followed by a 1.