C561C DLP, TLP, and Concurrency

Summer 2025

Discussion 11

I Data-Level Parallelism

The idea central to data level parallelism is vectorized calculation: applying operations to multiple

items (which are part of a single vector) at the same time.

Below is a small selection of the available Intel intrinsic instructions. All of them perform opera-
tions using 128-bit registers. When we use an instruction with “epi32”, we treat the register as a

pack of 4 32-bit integers.

Function

Description

__m128i

Datatype for a 128-bit vector.

__m128i _mm_setl_epi32(int i)

Creates a vector with four signed 32-bit inte-

gers where every element is equal to i.

_m128i _mm_loadu_sil28(__m128i *p)

Load 4 consecutive integers at memory ad-

dress p into a 128-bit vector.

void _mm_storeu_sil128(__m128i *p, __m128i a)

Stores vector a into memory address p

_m128i _mm_add_epi32(__m128i a, __mi128i b)

Returns a vector =
(ag + by, ay + by, a5 + by, ag + by)

__m128i _mm_mullo_epi32(__m128i a, __m128i b)

Returns a vector =
(ag X by, ay X by, ay X by, ag X bs).

__m128i _mm_and_si128(__m128i a, __m128i b)

Perform a bitwise AND of 128 bits in a and b,
and return the result.

__m128i _mm_cmpeq_epi32(__m128i a, __m128i b)

The ith element of the return vector will be
set to OXFFFFFFFF if the ith elements of a and
b are equal, otherwise it’ll be set to 0.

A longer list of Intel intrinsics can be found in the precheck worksheet!

SIMD-ize the following function, which returns the product of all of the elements in an array.

static int product_naive(int n, int *a) {

int product = 1;

for (int i = 0; i < nj i++) {
product *= al[il;

b

return product;

}

Things to think about: When iterating through a loop and grabbing elements 4 at a time, how should
we update our index for the next iteration? What if our array has a length that isn’t a multiple of

4? What can we do to handle this tail case?

2 DLP, TLP, and Concurrency

static int product_vectorized(int n, int *a) {
int result[4];
__m128i prod_v = _mm_setl_epi32(1);

// Vectorized Loop
for (int 1 = 0; 1 < n/d4 *x 4; i += 4) {
prod_v = _mm_mullo_epi32(
prod_v,
_mm_loadu_sil128((__m128i *) (a + 1))
);

_mm_storeu_si128((__m128i *) result, prod_v);
// Handle tail case

for (int i = n/4 * 4; i < n; i++) {
result[0] *= a[il;

return result[0] * result[1] * result[2] * result[3];

Recall that Amdahl’s Law can be used to measure the maximum speedup that can be obtained
through parallelization:

1

Speedup =

frac
optimized) + factor

(1 . fr ac optimized

improvement

Assume that we measure product_vectorized to be 4x faster than its scalar version. We
measure that 20% of our overall program is run serially while 80% is run in parallel. Calculate
the performance increase gained from parallelizing our code.

1

Speedup = T
optimizec
(1 T fracoptimized) + factor.

1
0.80
(1—0.80) + 250
B 1
~0.2040.20

| =

S

0.
2

ot

= 2.5x performance increase

DLP, TLP, and Concurrency 3

Now we want to write a similar function that will only add elements given a certain condition.

For example:

static int add20_naive(int n, int *a) {
int sum = O;
for (int i = 0; i < n; i++) {
if (ali]l == 20) {
sum += a[i];

}

return sum;

}
Fill in the function to use a vector mask to add elements only if they are equal to 20:

static int add20_vectorized(int n, int *a) {
int result[4];

// Fill sum_v with zeros
__mi28i sum_v = ____ _ _ _ e ___ ;

int32_t twenty[4] = {20, 20, 20, 20};

__mi28i vec_twenty = ___________________ ___ __ __ _ ___________ ;

// Vectorized Loop

for (int 1 =0; i < __________________ s 1 += ___) {
// Load array into vector

_mi128i vec_arr = _______ __ ___ _ o __ H

// Create vector mask

__ml128i vec_mask = __ _ 5
SUM_V = ;
}
_mm_storeu_si128(_______ o)

// Tail case...
/* Omitted */

4 DLP, TLP, and Concurrency

static int add20_vectorized(int n, int *a) {
int result[4];
__m128i sum_v = _mm_setl_epi32(0);

int32_t twenty[4] = {20, 20, 20, 203};
__m128i vec_twenty = _mm_loadu_sil128((__m128i *) twenty);

// Vectorized Loop
for (int 1 = 0; i < n/d4 *x 4; i += 4) {

__ml128i vec_arr = _mm_loadu_sil128((__m128i *) (a + i)));
__m128i vec_mask = _mm_cmpeq_epi32(vec_arr, vec_twenty);
sum_v = _mm_add_epi32(

sum_v,

_mm_and_sil28(vec_arr, vec_mask)

);

_mm_storeu_si128((__m128i *) result, sum_v);

// Tail case...
/* Omitted */

2 Thread-Level Parallelism

For each question below, state whether the program is:
Always Correct, Sometimes Correct, or Always Incorrect
If the program is always correct, also state whether it is:
Faster than Serial or Slower than Serial

Assume the number of threads can be any integer greater than 1 and that no thread will complete
in its entirety before another thread starts executing. arr is an int [] of length n.

// Set element i of arr to i
#pragma omp parallel

{
0; i < nj; i++)
i;

for (int i
arr[i]

DLP, TLP, and Concurrency 5

1) Always Correct
2) Slower than Serial
The values will be correct at the end of the loop since each thread is writing the same values.

Note that there is no for directive, so every thread executes this loop in its entirety. The
overhead of creating and managing threads will slow down the execution time to be slower than

serial.
arr[0] = 0;
arr[1] = 1;

#pragma omp parallel for
for (int i = 2; i < n; i++)
arr[i] = arr[i-1] + arr[i - 2];

1) Sometimes Correct

2) Slower than Serial

Sometimes correct: the loop has dependencies from previous data, so each thread would have
to wait for its previous dependency to finish which does not occur in this loop. However, there
exists a thread ordering where they execute in such a way that they complete each iteration in

sequential order.
Even if this happened, this would still be slower than serial due to the multithreading overhead

required.

// Set all elements in arr to O;
int i;
#pragma omp parallel for
for (i = 0; i < n; i++)
arr[i] = 0;

1) Always Correct
2) Faster than Serial

The for directive automatically makes loop variables (such as the index) private, so this will
work properly. The for directive splits up the iterations of the loop to optimize for efficiency,

and there will be no data races.

// Set element i of arr to ij;
int 1i;
#pragma omp parallel for
for (i = 0; i < n; i++) {
karr = 1i;
arr++;

}

6 DLP, TLP, and Concurrency

1) Sometimes Correct
2) Slower than Serial

Because each thread shares the array pointer, there is a data race when incrementing the array
pointer. If multiple threads are executed such that they all execute the first line, *arr = 1i;
before the second line, arr++;, they will clobber each other’s outputs by overwriting what the
other threads wrote in the same position. However, there is a thread execution order that will
not encounter data races, though it will be slower than serial.

3 Critical Sections
Consider the following multithreaded code to compute the product over all elements of an array.

// Assume arr has length 8*n.
double fast_product(double *arr, int n) {
double product = 1;
#pragma omp parallel for
for (int 1 = 0; i < n; i++) {
double subproduct = arr[i*8]xarr[i*8+1]*arr[i*8+2]*arr [i*8+3]
* arr[i*8+4]*arr [i*8+5]*arr [i*8+6]xarr [i*8+7];
product *= subproduct;
b
return product;

}

(a) What is wrong with this code?

The code has the shared variable product, which can cause data races when multiple

threads access it simultaneously.

(b) Fix the code using #pragma omp critical. Where should you place the directive to create
the critical section?

// Assume arr has length 8#n.
double fast_product(double *arr, int n) {
double product = 1;
#pragma omp parallel for
for (int i = 0; i < n; i++) {
double subproduct = arr[i*8]
* arr [i*8+2]
* arr [i*8+4]
* arr[i*8+6]
#pragma omp critical
product *= subproduct;

arr [i*8+1]
arr [i*8+3]
arr [i*8+5]
arr [i*8+7];

* ¥ ¥ *

}

return product;

DLP, TLP, and Concurrency 7

When added to a #pragma omp parallel for statement, the reduction(operation: var)
directive creates and optimizes the critical section for a for loop, given a variable that should be
in the critical section and the operation being performed on that variable. An example is given
below.

// Assume arr has length n
int fast_sum(int *arr, int n) {
int result = 0;
#pragma omp parallel for reduction(+: result)
for (int i = 0; i < n; i++) {
result += arr[i];
}
return result;

}

Fix fast_product by adding the reduction(operation: var) directive to the #pragma omp
parallel for statement. Which variable should be in the critical section, and what is the
operation being performed?

// Assume arr has length 8#n.
double fast_product(double *arr, int n) {
double product = 1;

for (int i = 0; i < n; i++) {
double subproduct = arr[i*8]xarr[i*8+1]*arr[i*8+2]*arr [i*8+3]
* arr[i*8+4]*arr [i*8+5]*arr [i*8+6]*arr [i*8+7];
product *= subproduct;
}

return product;

double fast_product(double *arr, int n) {

double product = 1;

#pragma omp parallel for reduction (*:product)

for (int i = 0; i < n; i++) {
double subproduct = arr[i*8]*arr[i*8+1]*arr[i*8+2]*arr [i*8+3]

* arr[i*8+4]*arr [i*8+5]*arr [i*8+6]*arr [i*8+7];

product *= subproduct;

}

return product;

Take a look at the following code which is run with two threads:

8 DLP, TLP, and Concurrency

#define N 5

void func() {
int A[N] = {1, 2, 3, 4, 5};
int x = 0;
#pragma omp parallel
{
for (int i = 0; i < N; i +=1) {
x += A[i];
A[i]l = 0;
}
}
}

What are the maximum and minimum values that x can have at the end of func?
Each of the 2 threads will independently:

+ Read value from X

« Read value from A

« Add value to x

« Zero out value in A

« Do the loop for 5 iterations each

Maximum: x = 30 - if thread 1 reads from x, reads from the array, and adds to x, and then
thread 2 reads from the new x, reads from the array, and adds to x before the array entry gets
zeroed, then x will have the value of x += A[i] + A[i].

Minimum: x = O - thread 2 reads from x getting the value x = 0 but halts and waits for thread
1 to completely finish (setting all array entries to 0). When thread 2 resumes execution, it will
add its current value for x to a zeroed A[i] which willbe 0 + 0 = 0 at all iterations of the loop.

4 OpenMProgramming

Consider the following C function:

#tdefine ARRAY_LEN 1000

void mystery(int32_t *A, int32_t *B, int32_t *C) {
for (int i = 0; i < ARRAY_LEN; i += 1) {
C[i] = A[i] - BI[il;
}
}

Manually rewrite the loop to split the work equally across N different threads.

DLP, TLP, and Concurrency 9

#define ARRAY_LEN 1000

void mystery(int32_t *A, int32_t *B, int32_t *C) {
#pragma omp parallel

{
int N = OMP_NUM_THREADS;

int tid = omp_get_thread_num();

for (int i = tid; i < ARRAY_LEN; i += N) {
C[i]l = A[i] - B[il;
b
b
}

Now;, split the work across N threads using a #pragma directive:
#define ARRAY_LEN 1000

void mystery(int32_t *A, int32_t *B, int32_t *C) {
#pragma omp parallel for
for (int i = 0; i < ARRAY_LEN; i += 1) {
Clil = A[i]l - BI[il;
b
¥

Instead of saving the product to an array C, we now want to XOR the subtraction of all the
elements of A and B.

#define ARRAY_LEN 1000

int mystery(int32_t *A, int32_t *B) {
int result = 0;
#pragma omp parallel for
for (int i = 0; i < ARRAY_LEN; i += 1) {
result A= A[i] - B[i];
}

return result;

}
What is the issue with the above implementation and how can we fix it?

There is a race condition for the result variable.

Solve the problem above in two different methods using OpenMP:

10 DLP, TLP, and Concurrency

(@) int mystery(int32_t *A, int32_t *B) {
int result = 0;
#pragma omp parallel for
for (int i = 0; i < ARRAY_LEN; i += 1) {
#pragma omp critical
result ~= A[i] - B[il;
}

return result;

(b) int mystery(int32_t *A, int32_t *B) {
int result = 0;
#pragma omp parallel for reduction(”:result)
for (int i = 0; i < ARRAY_LEN; i += 1) {
result A= A[i] - B[il;
T

return result;

Assume we run the above mystery function with 8 threads. The parallel portion accounts for
80% of the program and is 8x as fast as the naive implementation. Use Amdahl’s Law to calculate

the speedup of the full program where

1
Speedup = frac,, imi
(1 o frac o) optimized
optimized factorimpmvement
1
Speedup - fl'acopnmiyod
(1 - fracoptimized) + factorimp,.ové,.mm
B 1
(1—0.8) + %8
B 1
©0.2+0.1

= 3.333x speedup!

What is the maximum speedup we can achieve if we use unlimited threads in the parallel section
for an infinite performance increase? Assume the parallel portion still accounts for 80% of our

program.

10

DLP, TLP, and Concurrency

Speedup = ! fracy
(1 = fracopiimized) + fctor,pemen
- 1
(1—0.8) + 55005
1
0.2

= 5x maximum speedup!

What does the above result tell you about using parallelism to optimize programs?

Programs can only be as fast as their serial portion.

11

11

	Data-Level Parallelism
	Thread-Level Parallelism
	Critical Sections
	OpenMProgramming

