
CS61C DLP, TLP, and Concurrency
Summer 2025 Discussion 11

1 Data-Level Parallelism
The idea central to data level parallelism is vectorized calculation: applying operations to multiple
items (which are part of a single vector) at the same time.

Below is a small selection of the available Intel intrinsic instructions. All of them perform opera
tions using 128 bit registers. When we use an instruction with “epi32”, we treat the register as a
pack of 4 32 bit integers.

Function Description

__m128i Datatype for a 128 bit vector.

__m128i _mm_set1_epi32(int i)
Creates a vector with four signed 32 bit inte
gers where every element is equal to i.

__m128i _mm_loadu_si128(__m128i *p)
Load 4 consecutive integers at memory ad
dress p into a 128 bit vector.

void _mm_storeu_si128(__m128i *p, __m128i a) Stores vector a into memory address p

__m128i _mm_add_epi32(__m128i a, __m128i b)
Returns a vector =
(𝑎0 + 𝑏0, 𝑎1 + 𝑏1, 𝑎2 + 𝑏2, 𝑎3 + 𝑏3)

__m128i _mm_mullo_epi32(__m128i a, __m128i b)
Returns a vector =
(𝑎0 × 𝑏0, 𝑎1 × 𝑏1, 𝑎2 × 𝑏2, 𝑎3 × 𝑏3).

__m128i _mm_and_si128(__m128i a, __m128i b)
Perform a bitwise AND of 128 bits in a and b,
and return the result.

__m128i _mm_cmpeq_epi32(__m128i a, __m128i b)
The ith element of the return vector will be
set to 0xFFFFFFFF if the ith elements of a and
b are equal, otherwise it’ll be set to 0.

A longer list of Intel intrinsics can be found in the precheck worksheet!

1.1 SIMD ize the following function, which returns the product of all of the elements in an array.

static int product_naive(int n, int *a) {
 int product = 1;
 for (int i = 0; i < n; i++) {
 product *= a[i];
 }
 return product;
}

Things to think about: When iterating through a loop and grabbing elements 4 at a time, how should
we update our index for the next iteration? What if our array has a length that isn’t a multiple of
4? What can we do to handle this tail case?

1

2 DLP, TLP, and Concurrency

static int product_vectorized(int n, int *a) {
 int result[4];
 __m128i prod_v = __;

 // Vectorized Loop
 for (int i = 0; i < ______________; i += ________________) {

 prod_v = __;
 }

 _mm_storeu_si128(________________________, ______________________);

 // Handle tail case
 for (int i = ____________________; i < _____________; i++) {

 result[0] *= ________________________;
 }

 return ___;
}

1.2 Recall that Amdahl’s Law can be used to measure the maximum speedup that can be obtained
through parallelization:

Speedup = 1
(1 − fracoptimized) +

fracoptimized
factorimprovement

Assume that we measure product_vectorized to be 4x faster than its scalar version. We
measure that 20% of our overall program is run serially while 80% is run in parallel. Calculate
the performance increase gained from parallelizing our code.

2

DLP, TLP, and Concurrency 3

1.3 Now we want to write a similar function that will only add elements given a certain condition.
For example:

static int add20_naive(int n, int *a) {
 int sum = 0;
 for (int i = 0; i < n; i++) {
 if (a[i] == 20) {
 sum += a[i];
 }
 }
 return sum;
}

Fill in the function to use a vector mask to add elements only if they are equal to 20:

static int add20_vectorized(int n, int *a) {
 int result[4];

 // Fill sum_v with zeros
 __m128i sum_v = ____________________________;

 int32_t twenty[4] = {20, 20, 20, 20};
 __m128i vec_twenty = ______________________________________;

 // Vectorized Loop
 for (int i = 0; i < __________________; i += _____________) {
 // Load array into vector
 __m128i vec_arr = _____________________________________;

 // Create vector mask
 __m128i vec_mask = ____________________________________;

 sum_v = ___;
 }

 _mm_storeu_si128(_____________________________);

 // Tail case...
 /* Omitted */
}

3

4 DLP, TLP, and Concurrency

2 Thread-Level Parallelism
For each question below, state whether the program is:

Always Correct, Sometimes Correct, or Always Incorrect

If the program is always correct, also state whether it is:

Faster than Serial or Slower than Serial

Assume the number of threads can be any integer greater than 1 and that no thread will complete
in its entirety before another thread starts executing. arr is an int[] of length n.

2.1 // Set element i of arr to i
#pragma omp parallel
{
 for (int i = 0; i < n; i++)
 arr[i] = i;
}

2.2 arr[0] = 0;
arr[1] = 1;
#pragma omp parallel for
for (int i = 2; i < n; i++)
 arr[i] = arr[i-1] + arr[i - 2];

2.3 // Set all elements in arr to 0;
int i;
#pragma omp parallel for
for (i = 0; i < n; i++)
 arr[i] = 0;

2.4 // Set element i of arr to i;
int i;
#pragma omp parallel for
for (i = 0; i < n; i++) {
 *arr = i;
 arr++;
}

4

DLP, TLP, and Concurrency 5

3 Critical Sections
3.1 Consider the following multithreaded code to compute the product over all elements of an array.

// Assume arr has length 8*n.
double fast_product(double *arr, int n) {
 double product = 1;
 #pragma omp parallel for
 for (int i = 0; i < n; i++) {
 double subproduct = arr[i*8]*arr[i*8+1]*arr[i*8+2]*arr[i*8+3]
 * arr[i*8+4]*arr[i*8+5]*arr[i*8+6]*arr[i*8+7];
 product *= subproduct;
 }
 return product;
}

(a) What is wrong with this code?

(b) Fix the code using #pragma omp critical. Where should you place the directive to create
the critical section?

3.2 When added to a #pragma omp parallel for statement, the reduction(operation: var)
directive creates and optimizes the critical section for a for loop, given a variable that should be
in the critical section and the operation being performed on that variable. An example is given
below.

// Assume arr has length n
int fast_sum(int *arr, int n) {
 int result = 0;
 #pragma omp parallel for reduction(+: result)
 for (int i = 0; i < n; i++) {
 result += arr[i];
 }
 return result;
}

Fix fast_product by adding the reduction(operation: var) directive to the #pragma omp
parallel for statement. Which variable should be in the critical section, and what is the
operation being performed?

5

6 DLP, TLP, and Concurrency

// Assume arr has length 8*n.
double fast_product(double *arr, int n) {
 double product = 1;

 __
 for (int i = 0; i < n; i++) {
 double subproduct = arr[i*8]*arr[i*8+1]*arr[i*8+2]*arr[i*8+3]
 * arr[i*8+4]*arr[i*8+5]*arr[i*8+6]*arr[i*8+7];
 product *= subproduct;
 }
 return product;
}

3.3 Take a look at the following code which is run with two threads:

#define N 5

void func() {
 int A[N] = {1, 2, 3, 4, 5};
 int x = 0;
 #pragma omp parallel
 {
 for (int i = 0; i < N; i += 1) {
 x += A[i];
 A[i] = 0;
 }
 }
}

What are the maximum and minimum values that x can have at the end of func?

6

DLP, TLP, and Concurrency 7

4 OpenMProgramming
Consider the following C function:

#define ARRAY_LEN 1000

void mystery(int32_t *A, int32_t *B, int32_t *C) {
 for (int i = 0; i < ARRAY_LEN; i += 1) {
 C[i] = A[i] - B[i];
 }
}

4.1 Manually rewrite the loop to split the work equally across N different threads.

#define ARRAY_LEN 1000

void mystery(int32_t *A, int32_t *B, int32_t *C) {
 #pragma omp parallel
 {
 int N = OMP_NUM_THREADS;
 int tid = omp_get_thread_num();

 for (int i = ____________; i < ______________; i += _____________) {
 C[i] = A[i] - B[i];
 }
 }
}

4.2 Now, split the work across N threads using a #pragma directive:

#define ARRAY_LEN 1000

void mystery(int32_t *A, int32_t *B, int32_t *C) {

 __
 for (int i = 0; i < ARRAY_LEN; i += 1) {
 C[i] = A[i] - B[i];
 }
}

7

8 DLP, TLP, and Concurrency

4.3 Instead of saving the product to an array C, we now want to XOR the subtraction of all the
elements of A and B.

#define ARRAY_LEN 1000

int mystery(int32_t *A, int32_t *B) {
 int result = 0;
 #pragma omp parallel for
 for (int i = 0; i < ARRAY_LEN; i += 1) {
 result ^= A[i] - B[i];
 }
 return result;
}

What is the issue with the above implementation and how can we fix it?

4.4 Solve the problem above in two different methods using OpenMP:

(a) int mystery(int32_t *A, int32_t *B) {
 int result = 0;
 #pragma omp parallel for
 for (int i = 0; i < ARRAY_LEN; i += 1) {

 result ^= A[i] - B[i];
 }
 return result;
}

(b) int mystery(int32_t *A, int32_t *B) {
 int result = 0;

 for (int i = 0; i < ARRAY_LEN; i += 1) {
 result ^= A[i] - B[i];
 }
 return result;
}

8

DLP, TLP, and Concurrency 9

4.5 Assume we run the above mystery function with 8 threads. The parallel portion accounts for
80% of the program and is 8x as fast as the naive implementation. Use Amdahl’s Law to calculate
the speedup of the full program where

Speedup = 1
(1 − fracoptimized) +

fracoptimized
factorimprovement

4.6 What is the maximum speedup we can achieve if we use unlimited threads in the parallel section
for an infinite performance increase? Assume the parallel portion still accounts for 80% of our
program.

4.7 What does the above result tell you about using parallelism to optimize programs?

9

	Data-Level Parallelism
	Thread-Level Parallelism
	Critical Sections
	OpenMProgramming

