
CS61C TLP, Virtual Memory
Summer 2025 Discussion 12

1 OpenMProgramming
Consider the following C function:

#define ARRAY_LEN 1000

void mystery(int32_t *A, int32_t *B, int32_t *C) {
  for (int i = 0; i < ARRAY_LEN; i += 1) {
    C[i] = A[i] - B[i];
  }
}

1.1 Manually rewrite the loop to split the work equally across N different threads.

#define ARRAY_LEN 1000

void mystery(int32_t *A, int32_t *B, int32_t *C) {
  #pragma omp parallel
  {
    int N = OMP_NUM_THREADS;
    int tid = omp_get_thread_num();
    
    for (int i = tid; i < ARRAY_LEN; i += N) {
      C[i] = A[i] - B[i];
    }  
  }
}

1.2 Now, split the work across N threads using a #pragma directive:

#define ARRAY_LEN 1000

void mystery(int32_t *A, int32_t *B, int32_t *C) {
  #pragma omp parallel for
  for (int i = 0; i < ARRAY_LEN; i += 1) {
    C[i] = A[i] - B[i];
  }
}

1.3 Instead of saving the product to an array C, we now want to XOR the subtraction of all the
elements of A and B.
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#define ARRAY_LEN 1000

int mystery(int32_t *A, int32_t *B) {
  int result = 0;
  #pragma omp parallel for
  for (int i = 0; i < ARRAY_LEN; i += 1) {
    result ^= A[i] - B[i];
  }
  return result;
}

What is the issue with the above implementation and how can we fix it?

There is a race condition for the result variable.

1.4 Solve the problem above in two different methods using OpenMP:

(a) int mystery(int32_t *A, int32_t *B) {
  int result = 0;
  #pragma omp parallel for
  for (int i = 0; i < ARRAY_LEN; i += 1) {
    #pragma omp critical
    result ^= A[i] - B[i];
  }
  return result;
}

(b) int mystery(int32_t *A, int32_t *B) {
  int result = 0;
  #pragma omp parallel for reduction(^:result)
  for (int i = 0; i < ARRAY_LEN; i += 1) {
    result ^= A[i] - B[i];
  }
  return result;
}

1.5 Assume we run the above mystery function with 8 threads. The parallel portion accounts for
80% of the program and is 8x as fast as the naive implementation. Use Amdahl’s Law to calculate
the speedup of the full program where

Speedup = 1
(1 − fracoptimized) + fracoptimized

factorimprovement
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Speedup = 1
(1 − fracoptimized) + fracoptimized

factorimprovement

= 1
(1 − 0.8) + 0.8

8

= 1
0.2 + 0.1

= 3.333x speedup!

1.6 What is the maximum speedup we can achieve if we use unlimited threads in the parallel section
for an infinite performance increase? Assume the parallel portion still accounts for 80% of our
program.

Speedup = 1
(1 − fracoptimized) + fracoptimized

factorimprovement

= 1
(1 − 0.8) + 0.8

9999999…

= 1
0.2

= 5x maximum speedup!

1.7 What does the above result tell you about using parallelism to optimize programs?

Programs can only be as fast as their serial portion.

2 Virtual Memory Potpourri
2.1 For the following address spaces, how many bits are in the Virtual Page Number (VPN), Physical

Page Number (PPN), and Page Offset?

(a) A system with 16 MiB of virtual memory, 1 MiB of physical memory, 1024 B pages

VPN: 14 bits

PPN: 10 bits

Offset: 10 bits

(Q1.2) Number of PTEs: 214 PTEs

(Q1.3) Page Table Size: 216 Bytes

16 MiB of virtual memory means we have 16 MiB VM / 1 KiB pages = 16 ∗ 220/210 = 214

virtual pages which means our VPN = 14 bits.

1 MiB of physical memory means we have 1 MiB VM / 1 KiB pages = 220/210 = 210 physical
pages which means our PPN = 10 bits.

1 KiB pages means each page is 210 bytes so we have have an offset of 10 bits in our address.
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(b) A system with 512 MiB of virtual memory, 32 KiB of physical memory, 512 B pages

VPN: 20 bits

PPN: 6 bits

Offset: 9 bits

(Q1.2) Number of PTEs: 220 PTEs

(Q1.3) Page Table Size: 222 Bytes

512 MiB of virtual memory means we have 512 MiB VM / 512 B pages = 512 ∗ 220/512 =
220 virtual pages which means our VPN = 20 bits.

32 KiB of physical memory means we have 32 KiB VM / 512 B pages = 32 ∗ 210/29 = 26

physical pages which means our PPN = 6 bits.

512 B pages means each page is 29 bytes so we have have an offset of 9 bits in our address.
(c) A system with 4 GiB of virtual memory, 1 GiB of physical memory, 4 KiB pages

VPN: 20 bits

PPN: 18 bits

Offset: 12 bits

(Q1.2) Number of PTEs: 220 PTEs

(Q1.3) Page Table Size: 222 Bytes

4 GiB of virtual memory means we have 4 GiB VM / 4 KiB pages = 4 ∗ 230/4 ∗ 210 = 220

virtual pages which means our VPN = 20 bits.

1 GiB of physical memory means we have 1 GiB VM / 4 KiB pages = 230/4 ∗ 210 = 218

physical pages which means our PPN = 18 bits.

4 KiB pages means each page is 4 ∗ 210 bytes so we have have an offset of 12 bits in our
address.

2.2 For the above systems, how many entries are in each the page table?

Since the VPN is the offset in the page table, there must be an entry for each VPN. Thus, Number
of PTEs = 2VPN Bits.

2.3 For the above systems, calculate the size of the page table (in bytes) in memory given each Page
Table Entry is 4 bytes.

Page Table Size = Number of Entries × Size of Entry = Number of Entries × 22 Bytes

2.4 If a Page Table’s size is 230 Bytes and each page is 4 KiB, how many physical pages are needed
to store the page table?

If each page table is 230 Bytes and each page can store 4 ∗ 210, then it takes 230 Bytes /4 ∗ 210 =
218 physical pages to store the page table.
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2.5 Given a system with 12-bit VPNs, 8-bit PPNs, and 8-bit offsets:

(a) What is the Virtual Page Number (VPN) and the page offset of the virtual address 0x51B38?

VPN: 0x51B

Offset: 0x38

The VPN is the upper-most 12 bits of the address while the offset is the lower-most 8 bits of
the address.

(b) What is the Physical Page Number (PPN) and the page offset of the physical address 0xB1DC?

PPN: 0xB1

Offset: DC

The PPN is the upper-most 8 bits of the address while the offset is the lower-most 8 bits of
the address.

2.6 What are three specific benefits of using virtual memory?

• Illusion of access to entire address space (bridges memory and disk in memory hierarchy).
• Avoids memory address conflict between programs by simulating a separate full address space

for each process, so that the linker/loader don’t need to know about other programs.
• Enforces protection between processes and even within a process (e.g. read-only pages set up

by the OS).

3 Page Table Walk
Assume we have 16-bit VPNs, 12-bit PPNs, 8-bit page offsets, and 32-bit page table entries (PTEs).
The first six entries of the page table are shown below.

Page Table
0xB61C 0483
0xFB83 A61C
0x8483 3F01
0x7ABC 4103
0xC012 F7CB
0x15DA C203

...

Valid?
Valid
Valid
Valid

Invalid
Valid

Invalid

Dirty?
Clean
Dirty
Clean
N/A
Dirty
N/A

PPN
0x483
0x61C
0xF01
N/A
0x7CB
N/A

…where each page table entry (PTE) is formatted as:

1 Valid Bit 1 Dirty Bit 18 Status Bits 12 PPN Bits

3.1 Of the first 6 entries in the TLB, fill out the above table for each entry. List whether the PTE is a
valid mapping. If so, list translate its corresponding physical page and if the page is clean/dirty.
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For each of the Page Table Entries, we can rewrite the hex as binary and decode according to the
PTE format. For example, the first entry 0xB61C 0483 is 0b1011_0110...0100_1000_0011.
• The first MSB is defined as the valid bit which is 1 so our entry is valid.
• The second MSB is 0 which means our entry is not dirty.
• The last 12 bits are for the PPN mapping which (if PTE is valid) corresponds to the physical

page allocated to that virtual page. For this mapping, the PPN= 0x483.

3.2 For each of the following virtual addresses, answer whether accessing will result in a 1) Page
Table Hit or 2) Page Fault, and translate to its corresponding physical address. Each access occurs
independently, not sequentially. The next available free page has PPN 0x42D.

(a) 0x000429

Answer: Page Table Hit, PA = 0x7CB29

Our virtual address is split up into [VPN | Offset] bits. We have 8-bit offsets so our
offset = 0x29 and our VPN = 0x0004 which corresponds to entry 0xC012F7CB. Because
this is a valid mapping, our PPN = 0x7CB which means our physical address is 0x7CB29.

(b) 0x00018D

Answer: Page Table Hit, PA = 0x61C8D

Following the above procedure: offset = 0x8D and VPN = 0x0001 which corresponds
to entry 0xFB83A61C. Because this is a valid mapping, our PPN = 0x61C which means our
physical address is 0x61C8D.

(c) 0x000345

Answer: Page Fault, PA = 0x42D45

Following the above procedure: offset = 0x45 and VPN = 0x0003 which corresponds to
entry 0x7ABC4103. This is an invalid mapping which means we have not yet mapped this
VPN to a physical page. The next available free page has PPN = 0x42D which means our
physical address is 0x42D45. Although not shown, this PTE will be updated with this new
mapping.

3.3 Recall that the Page Table Base Register (PTBR) stores the physical address of our page table.
For this program, the PTBR = 0x10000. What is the physical address of the page table entry
0xC012F7CB?

0x10010. From the PTBR, we know that the first PTE is at 0x10000. Since each PTE is 4 bytes
and the required entry is at the 4th index, Physical address of the entry = PTBR +
offset = 0x10000 + (4 PTEs) = 0x10000 + 16 bytes = 0x10010.

3.4 We want to reserve the first 10 pages of physical memory to be read-only. How can we modify
our page table to accomplish this?

We can add a Read-Only status bit to the metadata which, if true, disallows writing to a specific
physical page.
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4 Page Table with TLB
4.1 A processor has 16-bit addresses, 256 byte pages, and an 8-entry fully associative TLB with LRU

replacement (the LRU field is 3 bits and encodes the order in which pages were accessed, 0 being
the most recent). The TLB for the current process is the initial state given below, and we have
three free physical pages. Assume that all current page table entries are in the initial TLB. Write
out the physical addresses of each location accessed and fill in the final state of the TLB according
to the following access pattern. Free Physical Pages: 0x17, 0x18, 0x19
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Initial TLB Final TLB

VPN PPN Valid Dirty LRU
0x01 0x11 1 1 0
0x00 0x00 0 0 7
0x10 0x13 1 1 1
0x20 0x12 1 0 5
0x00 0x00 0 0 6
0x11 0x14 1 0 4
0xac 0x15 1 1 2
0xff 0xff 1 0 3

VPN PPN Valid Dirty LRU
0x01 0x11 1 1 5
0x13 0x17 1 1 3
0x10 0x13 1 1 6
0x20 0x12 1 1 1
0x23 0x18 1 1 2
0x11 0x14 1 0 4
0xac 0x15 1 1 7
0x34 0x19 1 1 0

Access Pattern:

1. 0x11f0 (Read)

Hit. PA: 0x14f0, LRUs: 1, 7, 2, 5, 6, 0, 3, 4

2. 0x1301 (Write)

Miss. Map VPN 0x13 to next available free page which is PPN 0x17. PA: 0x1701 and set valid
and dirty bits. LRUs: 2, 0, 3, 6, 7, 1, 4, 5

3. 0x20ae (Write)

Hit. Set dirty bit because of the write. PA: 0x12ae. LRUs: 3, 1, 4, 0, 7, 2, 5, 6

4. 0x2332 (Write))

Miss. Map VPN 0x23 to next available free page which is PPN 0x18 and set valid and dirty.
PA: 0x1832. LRUs: 4, 2, 5, 1, 0, 3, 6, 7

5. 0x20ff (Read)

Hit. PA: 0x12ff. LRUs: 4, 2, 5, 0, 1, 3, 6, 7

6. 0x3415 (Write)

Miss and replace last entry. Map VPN 0x34 to the last free page which is 0x19 and set valid
and dirty bit. PA: 0x1915. LRUs 5, 3, 6, 1, 2, 4, 7, 0
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